

Vaccins COVID 19 : quelques données scientifiques récentes

Gilles Folléa, MD, PhD, HDR Maryvonne Delamaire, Biologiste médical, PhD 11/02/2021

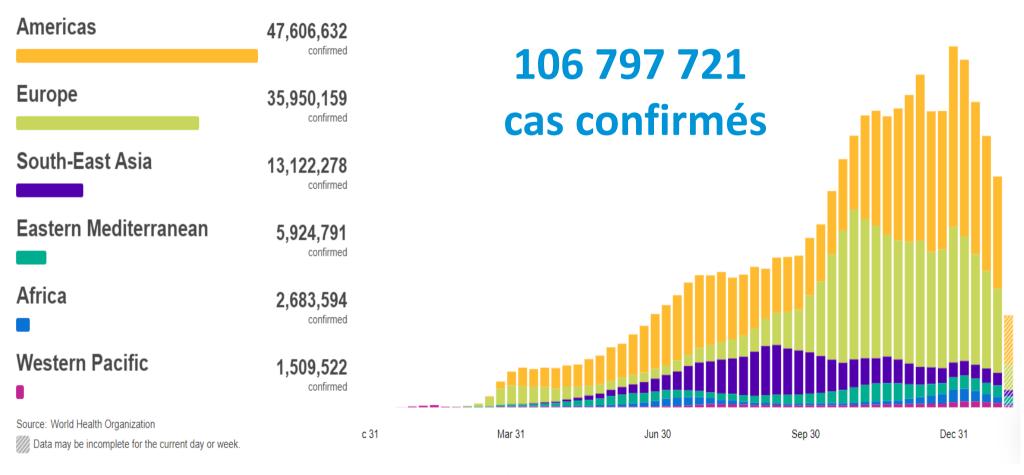
Introduction

Sujet d'actualité brûlant, communication prolifique, grande difficulté de se faire une opinion.

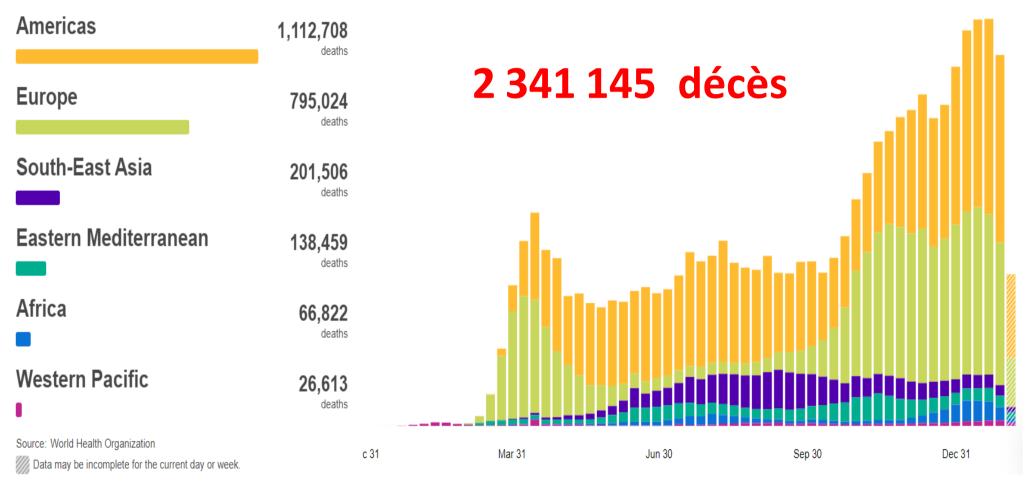
• Objectif: présenter de façon simple des données scientifiques récentes, en réponse à des questions courantes sur les vaccins COVID 19.

• <u>Méthode</u>:

- ✓ Revue (de type « amateur éclairé ») de données scientifiques publiées, non exhaustive
- ✓ Focus sur les 3 vaccins disponibles en France
- ✓ Approche **EXCUSIVEMENT SCIENTIFIQUE**, à l'exclusion de toute autre (eg économique, politique).


Plan de la présentation

- Infections par COVID 19: contexte
- Quelques connaissances utiles pour comprendre: virus, infection virale, réaction immunitaire
- Principes des vaccins COVID-19, différents types
- Vaccins à ARN messager: Pfizer-BioNTech, Moderna
- Vaccins vectorisés: Astra Zeneca
- Quel futur pour les vaccins à ARNm?


Conflits d'intérêts: aucun

Infections par COVID 19: contexte

Cas COVID 19 confirmés: rapports OMS au 11/02/2021

Décès COVID 19: rapports OMS au 11/02/2021

COVID 19-France: chiffres clés au 11/02/2021

3 385 622 CAS CONFIRMÉS (+25 387 DEPUIS

LA VEILLE)

(Source : données issues des laboratoires partenaires et de SI-VIC jusqu'au 12/05 puis de SI-DEP depuis le 13/05) 6,3%
DE TAUX
DE POSITIVITÉ²
DES TESTS

(Source : données issues de SI-DEP)

1990860

PERSONNES AYANT RECU AU MOINS UNE DOSE DE VACCIN EN FRANCE AU 09/02/21

(Source : données issues de vaccin covid)

80 443

DÉCÈS¹ DONT
56 772 A L'HÔPITAL
(+297 EN 24H)

(Source : données remontées par les centres hospitaliers participants à SI-VIC et signalements liés au COVID-19 dans les ESMS)

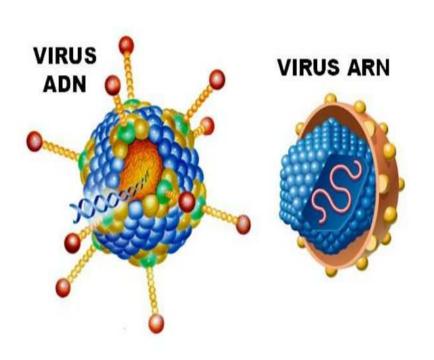
10 531

NOUVELLES HOSPITALISATIONS ET 1 763 ADMISSIONS EN RÉANIMATION SUR LES 7 DERNIERS JOURS

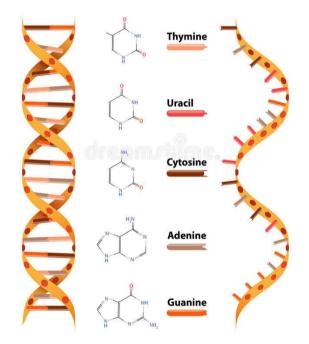
(Source : données remontées par les centres hospitaliers participants à SI-VIC) 67,3%

DES RESIDENTS EN EHPAD³ OU USLD⁴ ONT RECU AU MOINS UNE DOSE DE VACCIN AU 09/02/21

(Source : données issues de vaccin covid)

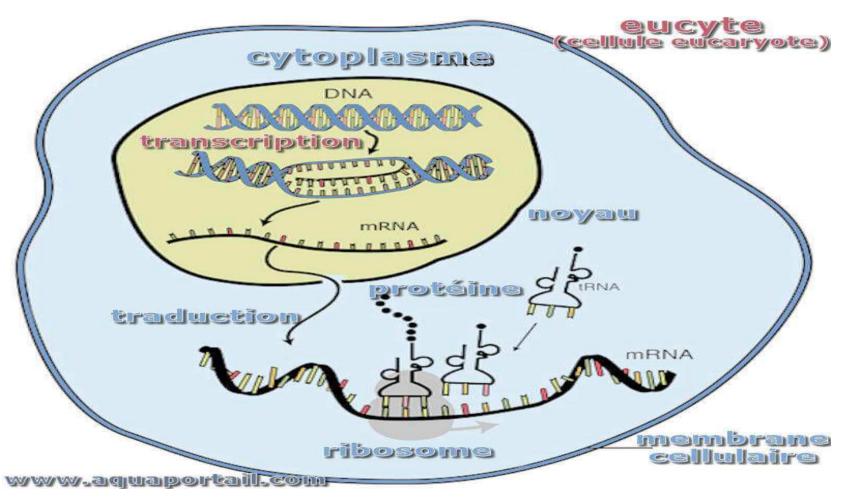

Conséquences du COVID 19 6 mois après hospitalisation Huang et al Lancet 08/01/2021

- <u>Méthode</u>: étude de 1 733 patients COVID-19 6 mois après sortie d'hôpital (Wuhan, entre 07/01 et 29/05/2020)
- Principaux résultats
 - Au moins un symptôme: 76%
 - Fatigue ou faiblesse musculaire: 63%
 - Troubles du sommeil: 26%
 - Anxiété ou dépression: 23%
 - Tests fonctionnels pulmonaires (n=390) altérés: 22-56% (+ si score de gravité de la maladie initiale + élevé)

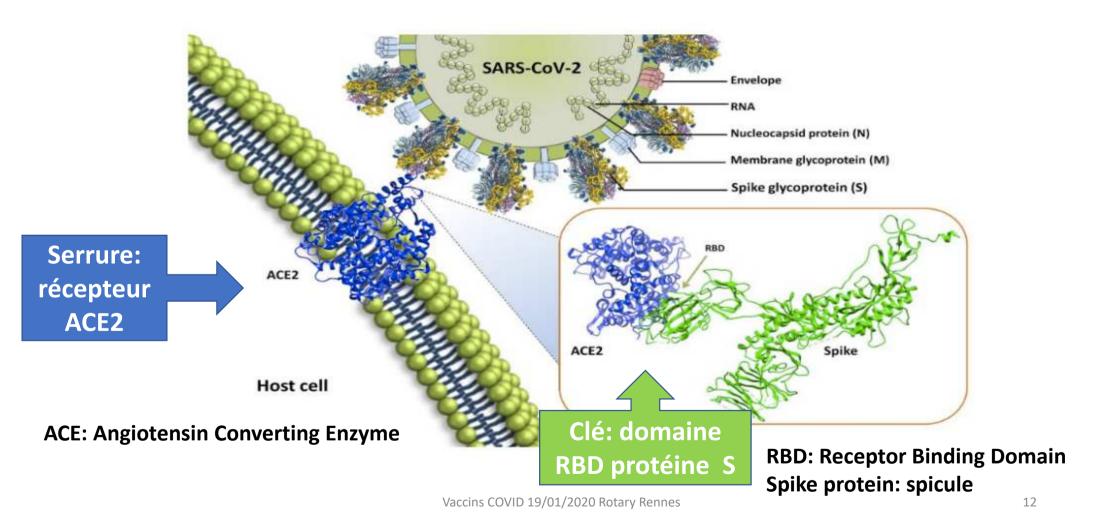

Anticorps neutralisants (n=94 patients testés)						
Phase aigue	96.2%	Titre médian: 19				
Suivi	58.5%	Titre médian: 10				

Quelques connaissances utiles pour comprendre : virus, infection virale, réaction immunitaire

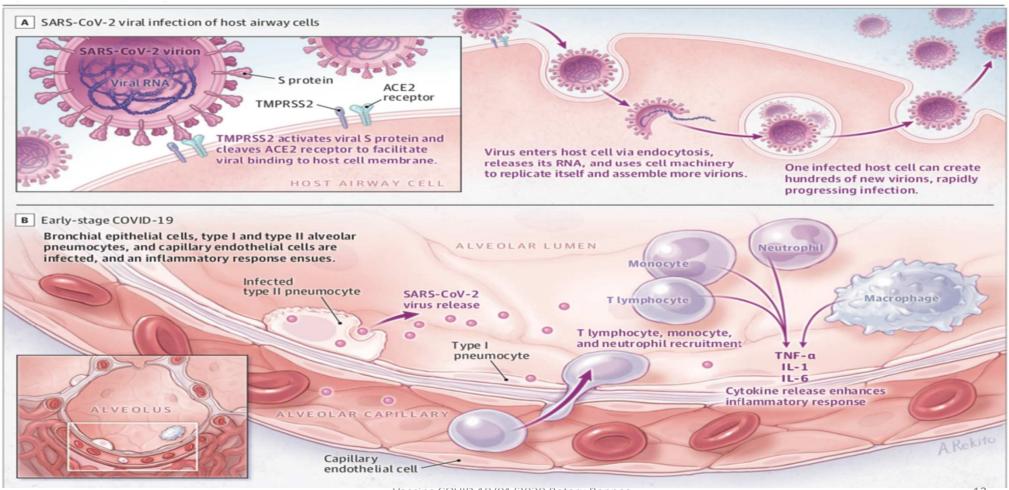
Le génome des virus


DNA and RNA structure

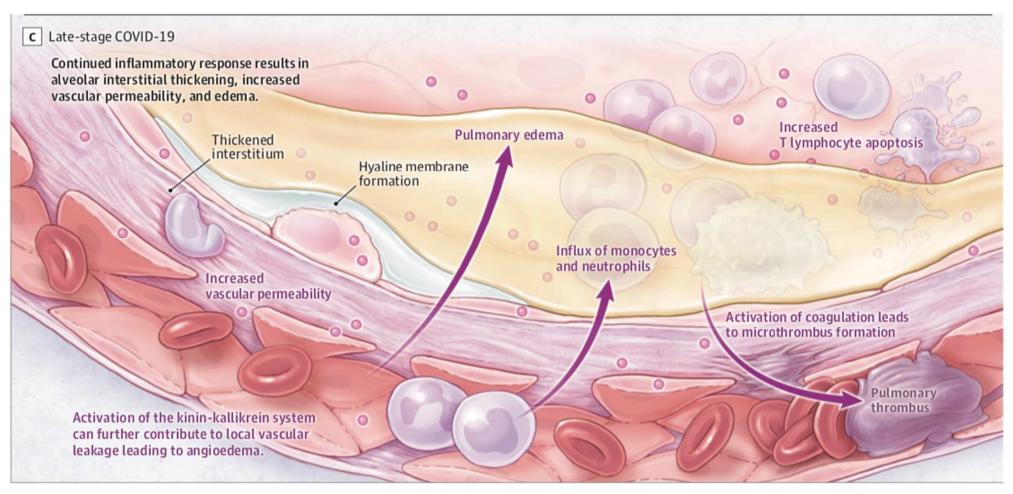
Le <u>SARS COV 2</u>, responsable de la COVID 19 est un virus à <u>ARN</u> (acide ribonucléique)

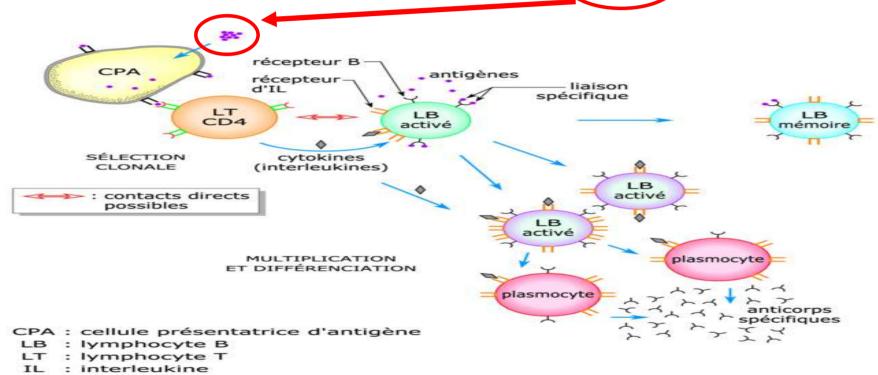

NB: ADN (acide désoxyribonucléique)

Acides nucléiques et synthèse protéique



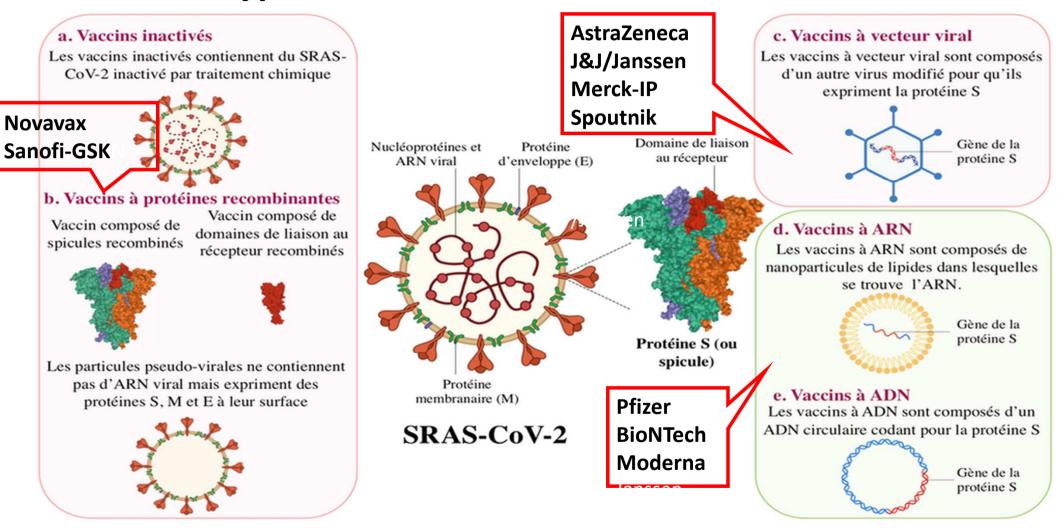
Les virus
utilisent
cette
machinerie
cellulaire
pour se
répliquer


Entrée du Coronavirus dans une cellule cible


COVID-19: mécanismes précoces

Syndrôme respiratoire aigu sévère COVID-19: mécanismes tardifs

Production d'anticorps contre un agent étranger (antigène), eg un virus



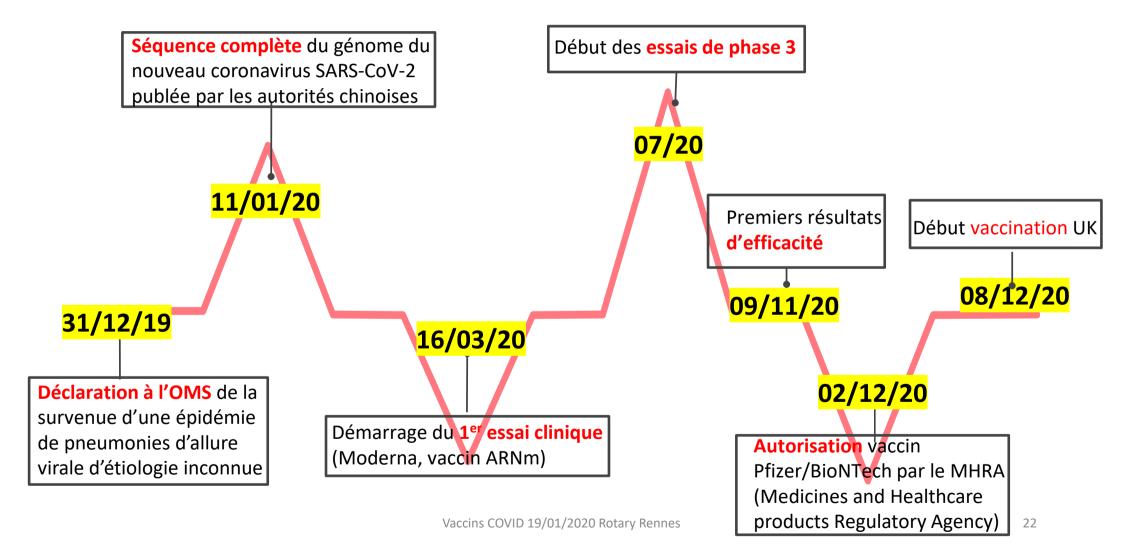
Principes des vaccins COVID-19, différents types

Principes des vaccins COVID-19

- <u>But</u>: permettre au système immunitaire de déclencher une réponse immune spécifique contre le SARS-CoV-2 et de le neutraliser avant le développement de la maladie Covid-19 (ou d'en atténuer les effets).
- La majorité des vaccins cible la protéine spike du virus.
- Déclencher des anticorps contre cette protéine permet de protéger contre l'infection
 - Hypothèse initiale basée sur l'expérience antérieure avec d'autres coronavirus
 - Vérifiée avec les vaccins développés au-delà de la phase 3.

Différents types de vaccins COVID-19 Alno et al. Biochimie Nov 2020

Phases réglementaires des études cliniques de développement vaccinal


Phase I	Phase II	Phase III	Phase IV
Sécurité (tolérance) Immunogénicité: anticorps	Sécurité (tolérance formulation finale) Dose/ efficacité: schéma de vaccination	Efficacité (protection) en situation réelle Sécurité (tolérance)	Pharmaco- épidémiologie
1ère administration chez l'homme	Définition de dose et calendrier	Études à grande échelle avec groupe témoin	Etudes Post-AMM
N = dizaines	N = centaines	N = milliers	N > 10 000

Vaccins COVID 19 à ARNm

Vaccins COVID 19 à ARNm: une vidéo simple Société de Pathologie de Langue Française, 29/12/2020

https://youtu.be/Dj24-PBPj5s

Calendrier de développement des premiers vaccins RNA

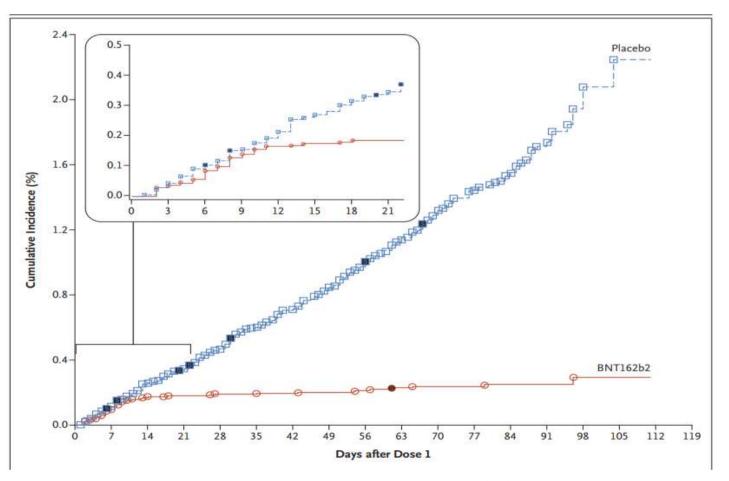
Un délai de développement exceptionnellement court, mais conforme aux réglementations en vigueur

- Progrès scientifiques en immunologie et virologie, eg séquençage du coronavirus dès janvier
- Recherche et technologies développées antérieurement pour d'autres vaccins, en préparation d'une maladie virale émergente: eg identification de la protéine S comme antigène cible lors des épidémies précédentes d'autres coronavirus (SARS COV 2003, MERS COV 2012)
- Exceptionnelle mobilisation des équipes de recherche et des Etats (financement)
- Anticipation (industriels et Etats) pour le développement industriel de la production
- Mobilisation des volontaires pour réaliser les essais cliniques rapidement
- Collaboration très efficace entre recherche, industrie et autorités réglementaires

Données d'efficacité des vaccins ARN

FP Polack et al NEJM 10/12/2020; LR Baden et al NEJM 30/12/2020

Pfizer-BioNTech


- Population étudiée
 - Groupe vaccin: 18 198 patients
 - Groupe placebo: 18 325 patients
- Efficacité après la dose 2, cas de Covid-19 symptomatiques
 - Groupe vaccin: 8 (1 grave)
 - Groupe placebo: 162 (9 graves)
 - Efficacité: 95%

Moderna-NIH

- Population étudiée
 - Groupe vaccin: 14,134 patients
 - Groupe placebo: 14,073 patients
- Efficacité après la dose 2, cas de Covid-19 symptomatiques
 - Groupe vaccin: 11 (0 grave)
 - Groupe placebo: 185 (30 graves, 1 †)
 - > Efficacité: 94%

Pas de variation d'efficacité avec âge, sexe, problèmes médicaux sous-jacents

Présentation graphique de l'efficacité (Pfizer-BioNTech)

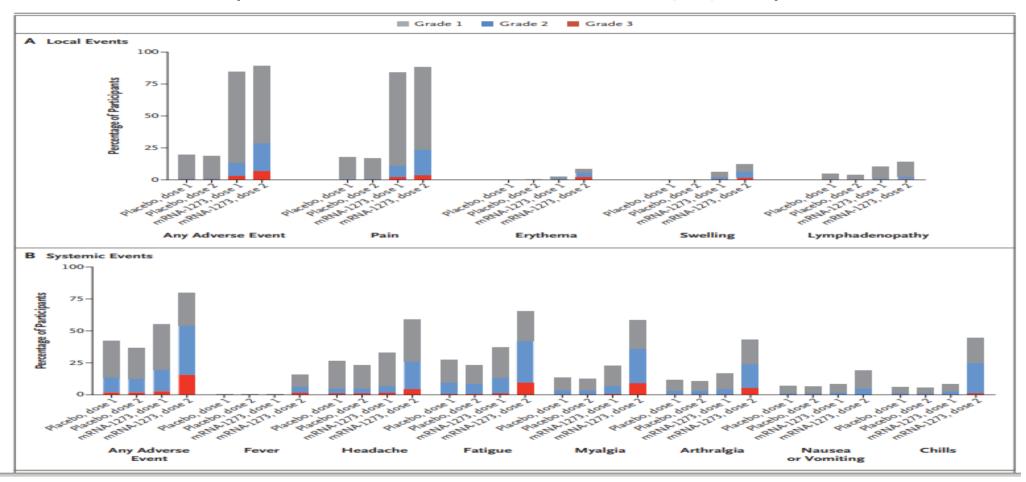
Efficacité vaccinale à partir de J 12 de la 1ère dose

Durabilité des réponses anticorps à un vaccin mRNA (Moderna) AT Widge et al NEJM 07/01/2021

Données de sécurité des vaccins Pfizer BioNTech et Moderna FP Polack et al NEJM 10/12/2020; LR Baden et al NEJM 30/12/2020

• Réactogénicité:

- ✓ Réactions plus fréquentes chez les vaccinés
- ✓ Douleur au point d'injection
- ✓ Fatigue, maux de tête, douleurs musculaires, frissons ou fièvre, légers à modérés; plus fréquents après la dose 2 et chez les plus jeunes


• Effets indésirables graves:

- ✓ Fréquence non supérieure chez les vaccinés (0,6 vs 0,5% et 1 vs 1%)
- ✓ Seulement 4 rapportés à la vaccination (lésion de l'épaule, ganglion axillaire, arythmie ventriculaire, paresthésie jambe).
- ✓ 2 décès sans lien avec vaccin dans groupe vaccin, vs 4 dans groupe placebo

• Suivi des patients: 2 ans

Présentation graphique des données de sécurité

(vaccin Moderna, LR Baden et al NEJM 30/12/2020)

Avantages / inconvénients des vaccins COVID 19 à ARN

N Pardi et al Nat Rev Drug Discov 2018

Avantages

✓ <u>Sécurité</u>:

- O Aucun risque infectieux: synthèse en laboratoire sans manipulation du virus.
- o Aucun risque de mutagénèse: ARN vaccinal non intégrable dans le génome des cellules.

✓ <u>Efficacité</u>:

- Protéine S produite dans nos cellules de façon naturelle, induisant une réponse immunitaire complète: anticorps et lymphocytes T.
- Les vaccins inactivés ou sous-unitaires induisent une réponse immunitaire uniquement de type anticorps.
- ✓ <u>Production</u>: vaccins très faciles et rapides à concevoir et produire.

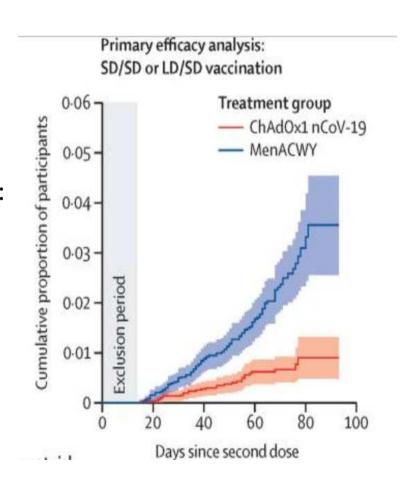
Inconvénients

√ Nécessité de conservation à très basse température

Vaccins COVID 19 vectorisés

Principes des vaccins vectorisés

- Utilisations de virus inoffensifs pour l'homme: eg adénovirus (virus du rhume)
- Insertion de l'ARN ou de l'ADN de la protéine S du SARS COV 2 dans le génome du vecteur
- Expression de l'antigène dans le cadre d'une infection virale permettant une forte stimulation de l'immunité innée nécessaire à l'induction d'une réponse immunitaire humorale (anticorps) et cellulaire (lymphocytes T): « adjuvant intrinsèque »


Avantages

- Développement depuis les années 1980
- Expérience chez l'animal et chez l'homme: thérapies géniques, Ebola
- Permettent la construction rapide de nouveaux candidats vaccins
- Conservation à +4° C

Données d'efficacité et de sécurité du vaccin Astra-Zeneca

M Voysey et al Lancet 09/01/2021

- Vecteur: adénovirus du chimpanzé, non réplicatif
- 23 848 participants, 2 doses IM
 - UK: ½ dose suivie d'une dose complète
 - Brésil et UK: 2 doses complètes
- **Efficacité**: analyse sur 11 636 participants (au 04/11):
 - 131 cas COVID 19 confirmés
 - Protection combinée: 70 %
 - ½ dose + dose complète (n=2 741): 90%
 - Doses complètes (n=8 895): 62%
- <u>Sécurité</u>: réactogénicité similaire aux vaccins ARN;
 0 hospitalisation, 0 COVID-19 grave chez les vaccinés (vs 10 et 2 chez les contrôles)

Vaccins COVID 19: questions résiduelles et défis

- Efficacité sur le portage et la transmission?
- Sécurité à moyen et long terme: à ce jour, données rassurantes
- Durée de la protection à moyen et long terme, revaccination?
- Vaccination des personness préalablement infectées?
- Défis liés aux mutations du SARS COV 2 (phénomène fréquent)
 - Effets sur fixation du virus sur les cellules et contagiosité?
 - Impact sur la sensibilité des tests PCR?
 - Impact sur l'efficacité vaccinale: efficacité des vaccins Pfizer et Moderna sur les variants anglais et sud africains
 - Franchissement de barrières inter-espèces (eg vison)

• ...

En l'état actuel des connaissances, la vaccination est efficace et sûre; c'est aussi un moyen de protéger les AUTRES!

Quel futur pour les vaccins à ARN?

Vaccination personnalisée anti-cancer

- Fruit de recherches actives depuis 1990.
- Séquençage: identification de mutations dans les cellules cancéreuses de la tumeur d'un patient: « mutanome »
- Conception de vaccins anti-néoépitopes spécifiques du cancer d'un patient: RNAm injecté dans cellules présentatrices d'antigène ex vivo et réinjectées au patient
- Essais chez l'animal
- Preuve du concept établie chez l'homme: 13 patients atteints de mélanome métastatique (U Sahin et al, Nature 2017).

Essais cliniques: vaccins mRNA contre le cancer N Pardi et al Nat Rev Drug Discov. 2018

Sponsoring institution	Vaccine type (route of administration)	Targets	Trial numbers (phase)	Status
Antwerp University Hospital	DC EP with TAA mRNA	AML	• NCT00834002 (1) • NCT01686334 (II)	Completed ^{206,297} Recruiting
Leucémie aigue myéloblastique	(i.d. or NA)	AML, CML, multiple myeloma	NCT00965224 (II)	Unknown
Leucennie algue myelobiastique		Multiple solid tumours	NCT01291420 (I/II)	Unknown ²⁰⁸
Mésothéliome, Glioblastome		Mesothelioma	NCT02649829 (I/II)	Recruiting
Wiesothenome, anobiastome		Glioblastoma	NCT02649582 (I/II)	Recruiting
Carcinome rénal Cancer du pancréas	DC EP with autologous tumour mRNA with or without CD40L mRNA (i.d. or NA)	Renal cell carcinoma	• NCT01482949 (II) • NCT00678119 (II) • NCT00272649 (I/II) • NCT01582672 (III) • NCT00087984 (I/II)	Ongoing Completed; results NA Ongoing Completed; results NA
- Control of the participation		Pancreatic cancer	NCT00664482 (NA)	Completed; results NA
Asterias Biotherapeutics	DC loaded with TAA mRNA (NA)	AML	NCT00510133 (II)	Completed ²¹⁰
BioNTech RNA Pharmaceuticals GmbH	Naked TAA or neo-Ag mRNA (i.nod.)	Melanoma	• NCT01684241 (I) • NCT02035956 (I)	Completed; results NA Ongoing
Mélanome	Liposome- complexed TAA mRNA (i.v.)	Melanoma	NCT02410733 (I)	Recruiting ⁵⁹
Cancer du sein	Liposome- formulated TAA and neo-Ag mRNA (i.v.)	Breast cancer	NCT02316457 (I)	Recruiting
CureVac AG	RNActive TAA mRNA (i.d.)	Non-small-cell lung cancer	• NCT00923312 (I/II) • NCT01915524 (I)	Completed ²¹¹ Terminated ²⁰⁰
Cancer du poumon		Prostate cancer	NCT02140138 (II) NCT00831467 (I/II) NCT01817738 (I/II)	Terminated Completed ¹⁵¹ Terminated ²¹²
Cancer de la prostate	DC loaded with CMV Ag mRNA (i.d. or ing.)	Glioblastoma, malignant glioma	• NCT00626483 (I) • NCT00639639 (I) • NCT02529072 (I) • NCT02366728 (II)	Ongoing ²¹³ Ongoing ^{138,139} Recruiting Recruiting
	DC loaded with autologous tumour mRNA (i.d.)	Glioblastoma	NCT00890032 (I)	Completed; results NA
	DC, matured, loaded with TAA mRNA (i.nod.)	Melanoma	NCT01216436 (I)	Terminated
Guangdong 999 Brain Hospital	DC loaded with TAA mRNA	Glioblastoma	• NCT02808364 (I/II) • NCT02709616 (I/II)	Recruiting Recruiting
	(NA)	Brain metastases	NCT02808416 (I/II)	Recruiting
Herlev Hospital	DC loaded with TAA mRNA (i.d.)	Breast cancer, melanoma	NCT00978913 (I)	Completed ²¹⁴

Merci pour votre attention

Questions?